
A Survey on Test Case Generation from UML
Model

Monalisha Khandai#1, Arup Abhinna Acharya#2, Durga Prasad Mohapatra*3
School of Computer Engineering, KIIT University

 Bhubaneswar, India
*Department of Computer Science & Engineering

 National Institute of Technology
Rourkela, India

Abstract— Testing is an important phase of software
development, to maintain the quality control and reliability of
the end products. Recent approach has been taken by the
researcher to use UML models for test case generation. Various
works has been done on test case generation for concurrent and
nonconcurrent systems. In case of concurrent system group of
activities are executed simultaneously where as in case of non-
concurrent system the activities are executed sequentially. Some
of the work has also been done for generating test cases from
combinational UML models. In this paper we have gone through
a survey on test case generation from UML models. Our works
focus on finding the existing process of test case generation from
UML model/s for concurrent as well as nonconcurrent systems.
This paper will make help to the researcher interested in the field
of test case generation from UML model to find out what work
has been done in their interested field. We have gone through 15
articles which have been published in the time span of 2005-2010.

Keywords— Testing, TestCases, concurrent system,
nonconcurrent system, UML Models.

I. INTRODUCTION

Testing is an important phase of software to produce high
reliable system and to maintain quality control. The reliability
and quality of the end product depend to a large extend on
testing. Therefore more than 50% of software development
effort is being spent on testing. According to IEEE testing is
“the process of exercising or evaluating a system or system
components by manual or automated means to verify that it
satisfies specified requirements”. In other word testing is the
process of identifying the difference between the expected and
actual results. If the software does not perform as required and
expected then a software failure is said to be occurred. Testing
effort consists of three things: i) test case generation or
selection ii) test case execution iii) test case evaluation.
Among the three, test cases generation problem is receiving
highest attention. A test case is normally a triplet [I, S, O],
where “I” is data input to the system “S” is the state of the
system to which the data will input, and “O” is the expected
output from the system. A test case is said to be having good
code coverage if it uncovers/detect maximum number of faults
with minimum number of test cases and having high fault

detection capability. Combination of all the test case with
which a given software product is to be tested is called test
suite.

Depending on the testing method employed, Software
testing can be implemented at any time in the development
process. However, most of the test effort occurs after the
requirements have been defined and the coding process has
been completed. But since code based testing have certain
disadvantages over model based testing. So model based
testing being an alternative approach became popular allowing
the testing technique to be applied along with the development
phase.

Recent approach that has been taken by researchers is to
use analysis design models like Unified Modelling Language
(UML) for test case generation. UML models are very popular
because when software engineering industry was in desperate
need for standardization and utilization of design
methodologies, UML came up as a solution. Other advantage
of UML models is that it provide different diagram for
representing different view of system models and it is easy to
automate. Automated test case generation is advantageous
when we have to generate the test cases for large system
which is inherently complex. In such a case generating all the
large number of test cases and carrying out the test cases is
very time consuming and labour intensive. The automated test
generating tool can be helpful in such a cases by saving the
time and cost. There are different tool available such as QTP,
Rational Rose of IBM for generating the test cases
automatically. But the recent approach can generate the test
cases semiautomatically.

Though many work has been done for sequential testing a
few work has been done for concurrency testing. Testing
concurrent systems is a very crucial task since such a system
can exhibit different responses depending on the concurrency
conditions. Due to concurrency there may be test explosion.
Synchronization and deadlock create problems when
concurrently running objects want to interact with each other.
The UML Sequence Diagram, Activity Diagram and State
Chart Diagram can be used for testing concurrency. However
State Chart Diagram is useful for unit testing and results a

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1164

large number of test cases where as the Sequence Diagram can
be useful for integration testing resulting a less number of test
cases. The Activity Diagram is useful for representing
complex sequence of parallel and conditional activities.

In this paper literature survey is done on various
methodologies available for generating test cases from UML
models for concurrent as well as non concurrent systems. A
summary on the work that has been done on this field, their
advantage and disadvantages has been presented. Performing
a literature search helps to define an unsolved problem.
Literature survey helps to have adequate knowledge of what
has been produced in the area of interest which is the most
crucial aspect for a researcher.

The rest of the paper is organized as follows: Section II
represents the various methodologies available for generating
test cases from UML model or combinational UML models.
Section III discusses the advantages and disadvantages of the
techniques and finally section IV discusses the conclusions
and future work.

II. TEST CASE GENERATION FROM UML DIAGRAMS

In this section we will discuss various techniques available
for test case generation. First we will consider the technique
available for generating test cases from single UML model
followed by the technique available for generating test cases
from combinational UML models.

A) From Single UML Diagram

In the following subsection we will first discuss the

research techniques available for generating test cases from
single UML models for nonconcurrent testing (sequential
testing), followed by the techniques available for concurrent
testing. There are various UML models available such as
UML Sequence Diagram, Activity Diagram, Statechart
Diagram and Communication Diagram.

1) For non-concurrent systems

Samuel et al. [1] present a method to generate test cases

based on UML Communication Diagram. Their approach
consists of the following steps:

a) Convert the Communication Diagram into
Communication Tree.

b) Traverse the tree in post order manner to select
the Conditional Predicates.

c) Transform the Conditional Predicate.
d) Generate the test data.

This technique first converts the Communication Diagram

into a Communication Tree. The Communication Diagram
consists of two things first one is node which is represented by
rectangles and the other is the edge. The rectangle depicts the
object and the edge or the link between the object depict the
message passed between the objects. Since the communication

diagram doesn’t have the time as a separate dimension so the
messages have ordered using sequence number in edge. For
example if the first message passed from the object A to B
then it is numbered as 0. Then if the next message sequence is
passed from B to C then it is numbered as 1. Suppose after
that there are two messages from object C then one of them
will be ordered as 1.1 and the other will be ordered as 1.2.
While constructing the communication tree the edge plays a
major role. Since edge represents the message sequence along
with the message. So considering the message sequences the
communication tree is constructed. The edge, which initiates
the message sequences having sequence number 0, is made as
root node of the communication tree. Next the edge having
sequence number 1 becomes the child node of node 0. And if
after that there are two edges numbered as 1.1 and 1.2 then the
node 1 will have two children node one will be 1.1 and the
other will be 1.2. After constructing the communication tree
their next step is now to traverse the communication tree to
select the conditional predicate. This technique traverses the
Communication tree in post ordered manner. While traversing
the tree in post order for selecting the condition predicate the
predicate which are in the leaf node will be selected first.
After selecting the conditional predicate, functional
minimization technique is applied. If the predicate is of the
from (E1 op E2), where op is ≤, <, ≥, > then F (predicate
function) = (E1-E2) or (E2-E1) depending upon which is
positive. This process is done to test the boundary testing. The
final step is to generate the Test Data. While generating the
test data one set of data should be generated so that the
predicate function becomes true and another set of test data
should be generated for which the predicate function becomes
false. In this step while generating the test data the advantage
of post order traversal process comes. Since this technique
first takes the leaf node conditional predicate so while
generating test data for a predicate function if any pre
condition path is there then it should satisfy that resulting less
number of test data.

Sarma et al. [2] proposed an approach of generating the

test sequence from UML Sequence Diagram. The method
consists of two steps:

a) First the Sequence Diagram (SD) is converted into an

intermediate format called Sequence Diagram Graph
(SDG).

b) Secondly the SDG is traversed to generate the test
cases.

First the SD is converted into SDG. The SD is not enough
to decide the different component for test case generation. So,
every node in the SDG contains the necessary informations
for test case generation. These informations are obtained from

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1165

OCL (Object Constraint Language). For constructing the SDG
from the SD first the set of operation scenarios are derived
from the SD then depending upon the operation scenarios the
SDG is constructed. An operation scenario represents a set of
messages passed between the objects during each operation.
Simply an operation scenario can be defined as a quadruple,
aOpnScn: <ScnId; StartState; MessageSet; NextState>. A
ScnID is a unique number which identifies each operation
scenario. StartState is a starting point of the ScnId, that is,
where a scenario starts. The set of all events that occur in an
operation scenario is denoted MessageSet. The state that a
system enters after the completion of a scenario is represented
by NextState this is the end state of an activity or a use case. It
may be noted that an SDG has a single start state and one or
more end state depending on different operation scenarios. An
event in a MessageSet is denoted by a tuple, aEvent:
<messageName; fromObject; toObject [/guard]> where,
messageName is the name of the message with its signature,
fromObject is the sender of the message and toObject is the
receiver of the message and the optional part /guard is the
guard condition subject to which the aEvent will take place.
An aEvent with * indicates it is an iterative event. Depending
upon the operation scenario the SDG is constructed. When
ever a message is passed from one object to another object the
state is changed from S1 to S2 and from S2 to S3. So while
constructing the SDG the states are taken as node in the SDG
and an edge is assigned between two nodes. Then the SDG is
traversed using a traversal algorithm to generate the test cases.
Since the Sequence Diagram represents the various
interactions possible among the objects. So the test set derived
for the SD should be able to detect whether the right
sequences of messages are followed or not (Scenario fault)
and the fault occur when an object invoke the method of
another object (Interaction fault).

Sarma et al. [3] presents a method for generating test cases

from UML Sequence Diagram and Usecase Diagram. The
approach consists of following steps:

a) First the Usecase Diagram (UCD) is converted into a

graph called Usecase Diagram Graph (UDG),
b) Next the Sequence Diagram is converted into a graph

called Sequence Diagram Graph (SDG).
c) Finally the UDG and the SDG is integrated to

generate a graph called System Testing Graph (STG).
The STG is then traversed to generate the test cases.

While constructing a UDG from UCD all the actor of the
UCD is replaced by a node in the UDG. A directed edge is
connected between each pairs of nodes to represents the
dependency between the nodes. The SD is converted into
SDG using the same technique used by M. Sharma et al [2].
The SDG and UDG are combined to form STG. The STG is
being traversed to generate the test cases.

Swain et al. [4] proposed a method to generate the test

cases from UML Sequence Diagram and Usecase Diagram.

Generating test sequences from Usecase Diagram (UD)
consists of following three steps:

a) First the UD is converted into an Activity

Diagram (AD) to specify the sequential constraint
(sequential constraint is the order in which
activity are to be maintained).

b) Then the Activity Diagram is being converted
into Usecase Diagram Graph (UDG).

c) Test sequences are generated from the UDG.

While constructing the AD from the UD the nodes of the
AD represent the use cases, and the edge represents the
sequential dependency between the use cases. There may be
use cases which are not sequentially related. They are
represented by fork and join bar in the AD. In the next step
while constructing UDG from the AD the nodes of the UDG
represent the action node of AD, and the edge represents the
dependency edge of AD. The fork and join bar of the AD are
removed in the UDG. For generating use cases sequence the
AD is traversed in Depth-First-Search (DFS) to find out the
possible paths from the AD. After finding the test sequences
the each node of the AD is mapped with the UDG to find out
the corresponding use case test sequences.

Deriving the test sequences from the Sequence Diagram
(SD) consist of three steps. First the SD is converted into an
Activity Graph (AG) using a mapping rule. Then a Concurrent
Control Flow Graph (CCFG) is being constructed from the
AG. In CCFG a node represents the Activity node and an edge
represents the control transfer among the nodes. Next all
Concurrent Control Flow Paths (CCFP) are identified from the
CCFG by finding out all the possible paths from the start node
to end node of the CCFG. These paths are the Sequence
Diagram test sequences. Finally the test cases are obtained by
combining the test sequences obtained from the Usecase
diagram and the test sequences obtained from the Sequence
Diagram.

Nayak et al. [5] proposed a method for generating test

cases from UML Sequence Diagram (SD). This approach
consists of enriching the SD with attribute and constraint
informations derived from OCL (Object Constraint
Language). The SD is being map into a Structured Composite
Graph called SCG. The test specifications are generated from
SCG. This technique uses the UML 2.0 SD. The SD available
in UML 2.0 uses an important feature called Combined
Fragment (CF).A CF combines multiple operation scenarios.
A CF may also contain another CF within it. This mechanism
enables complex scenarios to be specified in a single sequence
diagram. There are 13 different types of CF available in UML
2.0 such as ALT (choice of activities), PAR (group of activity
to be executed parallel) etc. To show the control flow
unambiguously the SD is converted into an intermediate
format called SCG. There are two types of node in the SCG
one is Block Node and another is the Control node. A block
node in SCG is a node corresponding to a set of messages
from the Sequence Diagram. Since a fragment is expected to

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1166

alter the flow of control, a control node is used to mark the
entering and leaving of a fragment. There four types of control
nodes are there. A decision node is used for displaying the
selection behaviour. A merge node is used for displaying exit
from the selection behaviour. A set of fork and join node is
used as an entry and exit from a par fragment. In SCG the
Block nodes which represents the sequence of messages
within one fragment of the SD is represented by oval shaped
node and only the node-id is mentioned for each nodes. The
guard associated to a fragment is shown as an edge descriptor.
For representing the decision and merge node of the SD
diamond shaped are used and for representing the fork and
join of the SD thick line segments are used in the SCG. After
constructing the SCG, the SCG is being traversed in Depth
First Search manner for generating test scenarios.

Samuel et al. [6] proposed a method to generate test cases

from UML 2.0 Sequence Diagram. This approach uses many
of the novel features like alt, lop, opt etc of UML 2.0
Sequence Diagram. This technique consists of two main basic
steps:

a) First the Sequence Diagram is converted into an

intermediate format called Sequence Dependency
Graph (SDG).

b) The SDG is being traversed to generate the test cases

This technique first defines the type of relationship that
exists between the messages, to construct the SDG. There are
four types of relationship that exist between two messages
such as indirect message dependency, direct message
dependency, simple indirect message dependency, simple
direct message dependency. Based on the relationship the
message sequences are generated. Message sequence is
sequence of messages that are guaranteed to execute together.
After finding out the type of relationship that exists between
the messages the SDG is constructed. Each node in the SDG
represents either a message or sequence of message. And edge
is assigned between every pairs of nodes in the SDG. While
constructing the nodes of SDG this technique uses the
message number associated with each message instead of
using the message name of the Sequence Diagram. The SDG
is being traversed to find out the entire possible path from the
start node to end node of the SDG in order to generate the test
cases.

Lin et al. [7] proposed a method for generating test cases

from UML Sequence Diagram (SD) and Object Constraint
Language (OCL). This technique first constructs a Scenario
Tree (ST) from the SD. While creating the ST from the SD the
messages are represented by nodes and the sequence in which
the messages are exchanged between the objects represents
the edge. Then the ST is traversed using all message paths
criterion (In case of all message paths criterion every message
of the SD should be considered at least once) to iteratively
select the attributes. The OCL is then used to store the pre and
post conditions of each node. The attribute selection and the

attribute transformation (representing pre and post conditions
using OCL) are carried out till all the attribute are considered
for test case generation. Using the pre and post conditions the
test cases for that particular attribute is generated and then the
next attribute is selected.

Santiago et al. [8] proposed a method for generating test

case from Statechart and Finite State Machine. This technique
is used to generate test cases for Implementation Under Test
(IUT) projects and presents an environment called GTCS
which enables the test sequence to obtain from both Statechart
and FSM (Finite State Machine). GTCS stand for Geracao
Automatica de Casos de Taste Baseada em Statecharts means
Automated Test Case Generation based on Statechart. The test
case is generated from the Statechart by following three basic
steps:

a) First the Statechart is converted into a FSM.
b) Secondly a reachability tree is constructed from the

FSM.
c) Finally a set of test case is generated from the FSM.

This technique first transforms the Statechart into FSM.

Then the reachability tree is constructed from the FSM. A
reachability tree shows the possible configurations and paths
(sequence of configurations) that the system can reach. After
obtaining the reachability tree the tree is traversed using all
transition coverage criteria to generate the test cases. All
transition coverage criterion state that the generate test case
should encounter all the possible transition of the reachability
tree.

2) For concurrent systems

Bader et al. [9] proposed a method for generating test
cases for concurrent systems from UML Statechart Diagram.
This technique takes Statechart Diagram as input and converts
it into a tree. The tree is being traversed to generate the test
case. In their approach they have taken an example of
Telephone operator system which receives and forwards the
calls. They have converted the Statechart of the telephone
operator system into an event tree where each node of the
event tree represents events of the Statechart. The tree (Event
tree) is traversed in DFS (Depth-First-Search) to generate the
test cases. Simply the test cases can be generated by parsing
the branches of tree from the root node to each leaf node. So,
the number of test cases for a Statechart is equal to the leaf
node of the tree representing Statechart.

Various works [10,11,12,13] has been done for generating

test cases for concurrent system using UML Activity
Diagram. Kundu et al. [10] proposed a novel approach of
generating test cases from UML Activity Diagram. The
approach consists of following two steps:

a) First Activity Diagram (AD) is converted into

Activity Graph (AG).

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1167

b) After that the AG is traversed to generate the test
cases.

The AD is converted into an intermediate format called
AG by using a mapping rule. While constructing the AG each
activity of the AD is replaced by a node (one to one mapping)
and an edge is assigned between two nodes of AG. In AG a
node represents a state of doing something and an edge
represents the flow between the activities. After constructing
the AG the information about each node of AG is stored in a
table called Node Description Table (NDT). The NDT
maintain the information about each node of the AG, i.e.
wether it is a fork node or a join node or a normal activity etc.
After constructing the AG, the AG is traversed to generate the
test cases. Every test case is generated using some coverage
criteria and are aimed to detect certain faults. Test coverage
criteria are a set of rules that guide to decide appropriate
elements to be covered to make test case design adequate. In
this approach Activity path coverage criterion is used. An
activity path is a path in an AG which considers a loop at most
two times and maintains precedence relationship between the
activities. Each activity in AG is having at most one
occurrences expect those activities which are in the loop, the
activities in the loop are having at most two occurrences. Like
every coverage criteria the activity path coverage criteria is
aimed to detect three types of fault such as fault in decision,
fault in loop, synchronization faults. Fault in a decision occur
in the decision node of an activity diagram, for example in an
activity diagram there is a decision node which decide the
registration validity. Then there may situation where it may
display the registration information of some registrant for
some invalid registration id. Fault in loop occur in the entry or
exit point of loop or increment, decrement operation. Suppose
a loop is executed twice and at the end of iteration after giving
try again = no, then instead of exiting from the loop the loop is
executed for the third time. When some activity begins its
execution before completion of execution of group of all
preceding activities then synchronization faults occurs. Or
simply synchronization faults occur when the concurrent
preceding activities are not synchronized properly. The
nonconcurrent activity path is used to find out the fault in the
loop, and branch condition. And the concurrent activities are
used to detect synchronized faults. Nonconcurrent activity
path consist of set of sequential activities, concurrent activity
path on the other hand consist of set of parallel activities. For
generating test cases from the AG an algorithm is used called
GenerateActivityPaths. The algorithm is a combination of
DFS (Depth-First-Search), BFS (Breadth-First-Search). BFS
is used to traverse the concurrent activities where as the rest
activity are traversed using DFS. After applying the algorithm

on the AG a set of Activity path are obtained. Then a rule is
applied on the generated activity paths according to which
each Activity path is decomposed into sequence of sub paths
to obtain derived activity paths. Let APi is an activity path
then decompose it into APi = P1 Pi Pm Pi Pn if possible and
then a derived path is obtain from APi which is Pderived(from
APi) = P1 Pi Pn. The rule is applied on each activity path to
replace decision/loop/fork-join blocks. To generate the test
cases, after obtaining the activity paths and the derived
activity paths now refer to NDT table to find out the
information associated with each node. Constituent part of test
cases are filled up by processing the paths and only taking into
account when the node/s is/are object created, object state
changed, sequence of branch condition, or activity sequences.

Sun [11] proposed a transformation-based approach for

generating scenario oriented test cases for testing concurrent
application by UML Activity Diagram. The approach consists
of three basic steps:

a) First the UML Activity Diagram is transformed into

an intermediate representation via a set of
transformation rule.

b) Secondly from the intermediate format a set of test
scenario is constructed.

c) Finally from the test scenario a set of test cases are
derived.

This technique proposes a transformation rule to transform

the Activity Diagram into an intermediate representation
called Binary Extended AND_OR Tree (BET). The
transformation rule is applied on fork node, join node, branch
node and join node. For transforming the fork node with
multiple out transition t1, t2, t3 ……. T create a new node “n”
in the ET, add a logic node FAND (ForkAND) in the BET.
Connect the node “n” and FAND by an edge levelled with
null. The out going transition of FAND are set as FAND –
e1→ n1,……. FAND – em→ nm. The transformation of branch
activity is similar to the fork activity however the FAND node
is replaced by BOR (BranchOR). For transforming the join
node with multiple in transition t1, t2, t3 ……. T create a new
node “n” in the BET and add logic node JAND (JoinAND) in
ET. Connect the JAND and the “n” by an edge labeled with
null. The in coming transition of JAND are set as n1 – e1→
JAND,……. nm– em→ JAND. The transformation of merge
activity is similar to join activity but here the JAND is
replaced by MOR (MergeOR). Where n1,….nm are the
mapped node activities of the AD and the e1…..em are mapped
edged transition. This technique uses two separate tables to
maintain the information about activity and the transition in
the activity which are used in the further process of test case
generation. Table 1 maintain the information associated with
each activity of the Activity Diagram such as the activity
number, activity types, details attribute of the activity,
incoming transition and the out going transition of the activity.

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1168

Table 2 maintains the details information of each node and
edge of the intermediate format, as well as the relation ship of
each node in the intermediate format with the original activity.
An algorithm is applied on the intermediate format to generate
the Extended AND_OR Tree. The algorithm looks for
Start/MOR/JAND nodes of the intermediate format and uses it
as root node of ET. After that it took one by one node from
the intermediate format and replaces it by corresponding
nodes of BET. The traversal process is continued in a DFS
(Depth-First-Search) manner until the leaf node of the tree
(BET) under construction is a MOR/JAND/END. By applying
the algorithm a set of trees are generated. After constructing
the BET the BET is now traversed using a traversal algorithm,
which traverse the BET according to weak concurrency
coverage criteria to generate the test sequence from the BET
for the original Activity Diagram. According to weak
concurrency coverage criteria test scenario are derived to
cover only one feasible sequence of parallel processes
between a pair of fork and join activity, without considering
the interleaving of activities between parallel processes. After
obtaining the test scenario the set of test cases are obtained by
referring to the tables to obtain the activity associated with
each node of the intermediate format.

Kim et al. [12] proposed a method for generating test cases

from UML Activity Diagram. This technique consists of
following steps:

a) First built an I/0 explicit Activity Diagram from

an ordinary UML Activity Diagram.
b) Then the I/O explicit Activity Diagram is

converted into a directed graph.
c) From the directed graph the test cases for the

original Activity Diagram is derived.

The I/O explicit Activity Diagram is an abstract representation
of original Activity Diagram which is constructed by
suppressing the non-external input and output and only
showing the external input and output. Since the internal
activities are having less importance than the input and output
activities they are suppressed in IOAD to avoid the test case
explosion. Then a directed graph is constructed from the I/O
explicit Activity Diagram. The directed graph is traversed
using DFS (Depth-First-Search) to generate a set of Basic
paths, where each activity is considered once at a time since
the technique uses basic paths (basic path coverage criterion
considers each activity only once) coverage criterion to
generate set of basic paths. In the next step a representative
subset of path are selected from the set of basic path by
removing the redundant edge and redundant nodes. The test
cases are obtained from the representative set of paths.

Fan et al. [13] proposed a method for generating test cases

from UML Subactivity and Activity Diagram. This technique
consists of following steps:

a) Divides the Activity Diagram into Subactivity
Diagram.

b) Then generate test cases for Activity Diagram
from the Subactivity Diagram hierarchically.

The Subactivity Diagrams divides the Activity Diagram into
Compound Activity Diagram (CAD) and Atomic Activity
Diagram (AAD) which construct the hierarchy of whole
Activity Diagram. In this technique first an Activity Diagram
Composition Tree (ADCT) is constructed by taking the idea
of functional decomposition to represent the hierarchy of Sub
activity diagram and compound activity diagram. After
obtaining the ADCT the test cases for the CAD is obtained by
taking the idea of bottom-up testing strategy. According to
bottom-up testing strategy first the leaf nodes of the ADCT
are traversed, because each leaf nodes represents an atomic
activity. Then the process is focused on Activity Diagram at
the higher levels. This process is continued till the root node is
encountered. For the activity diagram at the same level the
generation order will be from left-right. After each activity
diagram form different level in ADCT has its own test case set
a round-robin method is used to generate the full test cases.
The round-robin technique starts by picking the root node of
activity diagram. Then retrieve every set of test cases of the
root node, after that integrate it with the root node to generate
the full test cases.

B) From Combination of UML Diagrams

Various works has been done to generate test cases from

combinational UML models. Swain et al. [14] proposed a
method for generating test cases from combination of UML
Sequence Diagram and Activity Diagram. The technique
consists of following steps:

1) First MFG is generated from Activity Diagram and

Sequence Diagram.
2) In the second phase test sequences from MFG

corresponding to sequence and activity diagrams is
generated

3) In third phase the MFG of the Sequence Diagram and
the MFG of the Activity Diagram is traversed to
generate the test cases.

In the first phase the UML model are transformed into
Message Flow Graph (MFG). The MFG can be represented as
a quadruple (V, E, S, T) where each node v V represents
either a message or control predicate and an edge e E
represents a transition between the corresponding nodes. An
edge (m, n) E indicates the possible flow of control from the
node m to the node n. Nodes S and T are unique nodes
representing entry and exit of the diagram D. For obtaining
the MFG a table called Object Method Association Table
(OMAT) table is created for the Sequence Diagram which
maintains information about state change of an object when a
message is passed between two objects. Another table is
maintained for the Activity Diagram called Method Activity

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1169

Table (MAT) which maintains the activities associated with
the Activity Diagram. By referring to the tables the MFG for
the Activity and Sequence Diagram are created by taking each
node and assigning an edge between them. The MFGs are
next being traversed individually to generate the test cases.

Sokenou [15] proposed a method for generating test cases

from combination of UML Sequence and State Diagram. In
this technique the main information is obtained from
Sequence Diagram. The Statechart diagram is attached in
ordered to obtain the state information of each participating
objects. Each Sequence Diagram specifies one test case or set
of test cases. In this technique to obtain the required
information of each node for test case generation the state
diagrams are used. Each sequence diagram is considered as a
set of test cases. An attached state diagram for each
participating object defines its states. The sequence diagram is
traversed and the information about each node is extracted out
from the State Diagram to find out the test sequences.

III. DISCUSSION

The advantages of the technique proposed by Samuel et al.

[1] are that it is helpful in detecting faults in cluster level
testings as well as faults in boundary testing. In case of cluster
level testing the interaction between the objects is tested.
However the disadvantages of this technique are i) this
technique orders every message using some sequence number,
but if we will be using sequence diagram there is no need of
doing such things ii) the technique generate the test data first
for the leaf nodes by considering the pre path conditions of the
leaf node. So, when ever the system is a large and complex
system where large numbers of intermediate and leaf nodes
are there to generate the test data for the conditional predicate
of each leaf node we have to consider all pre paths conditions
which is becomes time consuming and labour intensive. The
advantage of the techniques proposed by Sharma et al. [2, 3]
is that it is useful in detecting scenario as well as interaction
fault. However the disadvantage of these techniques is that the
techniques are not help full in detecting the decision faults.
The advantage of the technique proposed by Swain et al. [4] is
that it uses the important features of UML 2.0 Sequence
Diagram such as interaction operand and constraints and
combined fragment. This technique exercises object
interactions in the context of use case dependencies to fulfil
the requirements of the user. The advantage of the technique
proposed by Nayak et al. [5] is that an effective set of test
scenario are generated for a Sequence Diagram using this
technique. However the disadvantage of this technique is
determining of infeasible paths is a challenging task of this
technique. Infeasible paths are those paths where there is no
input data for them to be executed.This paths need to be
detected and removed in order to generate optimized test
scenario. The advantage of the technique proposed by Samuel
et al [6] is that it uses the important features of UML 2.0
Sequence Diagram. However the disadvantage is that for

constructing the SDG it finds out the relationship exist
between every pair of messages. This is a time complexity
task when the system is it self a complex system and large
number of messages are communicated between the objects.
For example while constructing the SDG from the SD if the
message is a reply message then it is not considered in
construction process of SDG. And if there exist “is a part of”
relation ship between the messages then they are grouped up
to single node in SDG. The advantage of the technique
proposed by Lin et al. [7] is that this technique generates
effective test cases to achieve each message on link coverage
as well as scenario faults. This technique also achieves pre
and post conditions path coverage. However the disadvantage
is that the generated test sequence will be large in numbers
since we are using all message paths.

The advantage of the technique proposed by Santiago et al.
[8] is that it provides a methodology for generating test cases
for softwares that is Implementation Under Test (IUT). The
advantage of the technique proposed by Bader et al. [9] is that
the technique considers communications as well as
concurrency issues while generating test cases for a
concurrent system. However the disadvantage of [8, 9] is that
test case explosion problem is the main issue of a Statechart
due to consideration of each and every state that an object
undergoes during its operations. The advantages of the
technique used by Kundu et al. [10] is that it is capable of
detecting the fault associated with the truth value of a do-
while loop condition since this technique is using activity path
coverage criterion where the loop is consider at most two. But
this is not possible for the basic path coverage criterion
because it consider the loop to be executed at most once.
Secondly this approach is capable of detecting more faults like
fault in loop, synchronization fault, as well as fault in decision
than the previously existing approaches. Finally it is possible
to find out the location of faults. However the disadvantage of
this technique is that while generating the activity paths from
the AD the paths where the loop is executed one or two times
are taken, however there may be situation where the loop is
executed for zero times. Those activity paths where the loop
will be executed for zero times are not taken into
considerations. So this technique is incapable of detecting the
faults of the activity path where the loop is encountered zero
times. The advantage of the technique proposed by Sun [11] is
that it considers the parallel activities, as well as conditional
activity of system for test case generation. It transforms the
fork node, join node as well as the branch and join node to
address the issue associated with concurrent and conditional
activities. However the disadvantage of this technique is that it
does not consider the loop conditions where certain activities
needed to be repeated until some condition is satisfied. The
advantage of the technique proposed by Kim et al. [12] is that
it controls the test case explosion by suppressing the non-
external input and out-put events. However the disadvantage
of this technique is that it generates the test cases by basic-
path coverage criterion, where each activity is having exactly
one occurrence. That means the activity in loop will be
executed exactly once. So when ever there will be a do-while

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1170

loop then the fault associated with the true part of that loop
can not be detected as explained in [10]. The second
disadvantage of this technique is that while generating set of
representative path from the basic path it removes the
redundant nodes and redundant edges, but what are the
redundant nodes and edges has not explained here. The
advantage of the technique Fan et al. [13] is that it uses the
Round-robin-strategy to generate the test cases, which
generate less number of test cases as compare to complete
combination strategy. However here the disadvantages is that
since here each activity is decomposed into a set of sub
activities so, by applying this technique the number of
generated test cases will be more as compare to the techniques
that generate the test cases from normal activity diagram. The
advantage of the technique proposed by Swain et al. [14] is
that it uses the combination of UML Activity and Sequence
Diagram. So, using this technique it is possible to detect faults
associated with Activity Diagram as well as the faults
associated with the Sequence Diagram. The advantages of the
technique proposed by Sokenou [15] is that since it uses the
combination of Sequence and Statechart diagram it is possible
to obtain the set of message sequence along with the pre and
post condition associated with each objects. However using
the Statechart results in test case explosion as in the case of [8,
9].

IV. CONCLUSION AND FUTURE WORK

In this paper we have gone through a literature survey on
generating test cases from UML models. Various works that
has been done on generating test cases from single UML
model or combinational models for concurrent as well as
nonconcurrent system has been presented. Here we have
discussed the techniques used in different article for
generating test cases, their advantages, and disadvantages.
This paper will help researcher to find out what work has been
done in their interested field.

In future we are planning to generate test cases from
combinational UML models. Where we will take different
UML models, after converting the UML models into their
intermediate formats we will combine the intermediate
formats and will generate the test cases from the
combinational intermediate format. We will also prove that
our technique is capable of detecting more number of faults
than compared to single UML models.

As explained in the Fig.1 we will first convert the System
Models into intermediate formats called System Graph by
using a mapping algorithm. The individual System Graphs
will be combined using an integration algorithm which will
integrate the individual graphs to form a Combinational
System Graph. The Combinational System Graph will be
traversed using a traversal technique to generate the test cases.
Since the Combinational Graph will be formed by
combination of more than one UML models so, it will have
more coverage area and high fault detection capability than
compared to the single UML models.

FIG.1 Frame work for generating test cases from combinational UML
Models

REFERENCES
[1] P.Samuel, R.Mall, P. Kanth, “Automatic test case generation from

UML communication diagram”, Information and Software Technology,
Elsiver, 2007, pp. 158 – 171.

[2] M. Sharma, D. Kundu, R.Mall, “Automatic Test Case Generation from
UML Sequence Diagrams”, 15th International Conference on Advanced
Computing and Communications, IEEE, 2007, pp. 60 – 65.

[3] M. Sharma, R.Mall, “Automatic Test Case Generation from UML
Models”, 10th International Conference on Information technology,
IEEE, 2007, pp. 196 – 201.

[4] S. K. Swain, D. P. Mohapatra, R. Mall “Test Case Generation Based on
Use case and Sequence Diagram”, International Journal of Software
Engineering, IJSE Vol.3 No.2 July 2010 pp. 21 – 52.

[5] A. Nayak, D. Samanta “Automatic Test Data Synthesis using UML
Sequence Diagrams”, in Journal of Object Technology, vol. 09, no. 2,
March{April 2010, pp. 75 – 104.

[6] P. Samuel, A. T. Joseph, “Test Case Generation from UML Sequence
Diagrams”, Ninth ACIS International Conference on Software
Engineering, Artificial intelligence, Networking, and
parallel/distributed computing, IEEE, 2008 pp. 879 – 887.

[7] L. B. Lin, L. Z. Shu, L. Qing, C. Y. Hong “Test Case Automate
Generation from UML Sequence diagram and OCL Expression”
International Conference on Computational Intelligence and Security
IEEE, 2007, pp. 1048 – 1052.

[8] V. Santiago, N. L. Vijaykumar, D. Guimaraes, A. S. Amaral, E.
Ferreira “An Environment for Automated Test Case Generation from
Statechart-based and Finite State Machine-based Behavioural Models ”,
IEEE 2008, pp. 1 – 10.

[9] A. Bader, S. M Sajeev, S. Ramakrishnan. “Testing Concurrency and
Communication” in Distributed Objects.

[10] D. Kundu, D.Samanta, “A Novel Approach to Generate Test Cases
from UML Activity Diagrams”, Journal of Object Oriented
Technology, vol. 8, no 3, May-June 2009 pp. 65 – 83.

[11] C. Sun, “A Transformation-based Approach to Generating Scenario-
oriented Test Cases from UML Activity Diagram for Concurrent
Applications”, Annual IEEE International Computer Software and
Applications Conference, IEEE, 2008, pp. 160 –167.

[12] H. Kim, S. Kang, J. Baik, I. Ko, “Test Cases Generation from UML
Activity Diagram”, Eight ACIS International Conference on Software
Engineering, Artificial intelligence, Networking, and parallel/
distributed computing, IEEE, 2007 pp. 556 – 561.

[13] X. Fan, J. Shu, L. Liu, Q. Liang, “Test Case Generation from UML
Subactivity and Activity Diagram”, Second International Symposium
on Electronic Commerce and Security, IEEE. 2009, pp. 244 – 248.

[14] S. K. Swain, D. P. Mohapatra, “Test Case Generation from Behavioral
UML Models”, International Journal of Computer Applications,
Volume 6– No.8, September 2010, pp. 5 – 11.

[15] D. Sokenou, “Generating Test Sequences from UML Sequence
Diagrams and State Diagrams” pp. 236 – 240.

Monalisha Khandai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1164-1171

1171

